Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Science ; 383(6685): eadi3808, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386728

RESUMO

Cancer risk is influenced by inherited mutations, DNA replication errors, and environmental factors. However, the influence of genetic variation in immunosurveillance on cancer risk is not well understood. Leveraging population-level data from the UK Biobank and FinnGen, we show that heterozygosity at the human leukocyte antigen (HLA)-II loci is associated with reduced lung cancer risk in smokers. Fine-mapping implicated amino acid heterozygosity in the HLA-II peptide binding groove in reduced lung cancer risk, and single-cell analyses showed that smoking drives enrichment of proinflammatory lung macrophages and HLA-II+ epithelial cells. In lung cancer, widespread loss of HLA-II heterozygosity (LOH) favored loss of alleles with larger neopeptide repertoires. Thus, our findings nominate genetic variation in immunosurveillance as a critical risk factor for lung cancer.


Assuntos
Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe II , Vigilância Imunológica , Perda de Heterozigosidade , Neoplasias Pulmonares , Humanos , Antígenos de Histocompatibilidade Classe II/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Macrófagos Alveolares/imunologia , Fatores de Risco , Fumar/imunologia , Vigilância Imunológica/genética , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único
2.
Sci Signal ; 17(824): eadg9256, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377179

RESUMO

High-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent. Molecular dynamics simulations showed that the S1P-bound ApoM moiety in A1M efficiently activated EC surface receptors. Treatment of human umbilical vein ECs with A1M-S1P stimulated barrier function either alone or cooperatively with other barrier-enhancing molecules, including the stable prostacyclin analog iloprost, and suppressed cytokine-induced inflammation. A1M-S1P injection into mice during sterile inflammation suppressed neutrophil influx and inflammatory mediator secretion. Moreover, systemic A1M administration led to a sustained increase in circulating HDL-bound S1P and suppressed inflammation in a murine model of LPS-induced endotoxemia. We propose that A1M administration may enhance vascular endothelial barrier function, suppress cytokine storm, and promote resilience of the vascular endothelium.


Assuntos
Apolipoproteínas , Lipocalinas , Humanos , Camundongos , Animais , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Lipocalinas/metabolismo , Lipocalinas/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Apolipoproteínas M , Inflamação , Lipoproteínas HDL/farmacologia , Lipoproteínas HDL/metabolismo , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Esfingosina
3.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359819

RESUMO

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Assuntos
Neoplasias , Proteogenômica , Humanos , Terapia Combinada , Genômica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteômica , Evasão Tumoral
4.
Cancer Cell ; 41(8): 1397-1406, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37582339

RESUMO

The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigates tumors from a proteogenomic perspective, creating rich multi-omics datasets connecting genomic aberrations to cancer phenotypes. To facilitate pan-cancer investigations, we have generated harmonized genomic, transcriptomic, proteomic, and clinical data for >1000 tumors in 10 cohorts to create a cohesive and powerful dataset for scientific discovery. We outline efforts by the CPTAC pan-cancer working group in data harmonization, data dissemination, and computational resources for aiding biological discoveries. We also discuss challenges for multi-omics data integration and analysis, specifically the unique challenges of working with both nucleotide sequencing and mass spectrometry proteomics data.


Assuntos
Neoplasias , Proteogenômica , Humanos , Proteômica , Genômica , Neoplasias/genética , Perfilação da Expressão Gênica
5.
Sci Immunol ; 8(86): eadg0878, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37624910

RESUMO

During persistent antigen stimulation, such as in chronic infections and cancer, CD8 T cells differentiate into a hypofunctional programmed death protein 1-positive (PD-1+) exhausted state. Exhausted CD8 T cell responses are maintained by precursors (Tpex) that express the transcription factor T cell factor 1 (TCF-1) and high levels of the costimulatory molecule CD28. Here, we demonstrate that sustained CD28 costimulation is required for maintenance of antiviral T cells during chronic infection. Low-level CD28 engagement preserved mitochondrial fitness and self-renewal of Tpex, whereas stronger CD28 signaling enhanced glycolysis and promoted Tpex differentiation into TCF-1neg exhausted CD8 T cells (Tex). Furthermore, enhanced differentiation by CD28 engagement did not reduce the Tpex pool. Together, these findings demonstrate that continuous CD28 engagement is needed to sustain PD-1+ CD8 T cells and suggest that increasing CD28 signaling promotes Tpex differentiation into more functional effector-like Tex, possibly without compromising long-term responses.


Assuntos
Antígenos CD28 , Fator 1 de Transcrição de Linfócitos T , Fator 1 de Transcrição de Linfócitos T/genética , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos , Diferenciação Celular , Fatores de Transcrição
6.
Mol Psychiatry ; 28(8): 3355-3364, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37528227

RESUMO

Lapses in inhibitory control have been linked to relapse in human drug addiction. Evidence suggests differences in inhibitory control depending on abstinence duration, but the underlying neural mechanisms remain unknown. We hypothesized that early abstinence (2-5 days) would be characterized by the strongest impairments of inhibitory control and most wide-spread deviations in resting-state functional connectivity of brain networks, while longer-term abstinence (>30 days) would be characterized by weaker impairments as compared to healthy controls. In this laboratory-based cross-sectional study, we compared individuals with Cocaine Use Disorder (iCUD) during early (cocaine urine-positive: N = 19, iCUD+; 32% female; mean age: 46.8 years) and longer-term abstinence (cocaine urine-negative: N = 29, iCUD-; 15% female; mean age: 46.6 years) to healthy controls (N = 33; 24% female; mean age: 40.9 years). We compared the groups on inhibitory control performance (Stop-Signal Task) and, using a whole-brain graph theory analysis (638 region parcellation) of functional magnetic resonance imaging (fMRI) data, we tested for group differences in resting-state brain function (local/global efficiency). We characterized how resting-state brain function was associated with inhibitory control performance within iCUD. Inhibitory control performance was worst in the early abstinence group, and intermediate in the longer-term abstinence group, as compared to the healthy control group (P < 0.01). More recent use of cocaine (CUD+ > CUD- > healthy controls) was characterized by decreased efficiency in fronto-temporal and subcortical networks (primarily in the salience, semantic, and basal ganglia networks) and increased efficiency in visual networks. Importantly, a similar functional connectivity pattern characterized impaired inhibitory control performance within iCUD (all brain analyses P < 0.05, FWE-corrected). Together, we demonstrated that a similar pattern of systematic and widespread deviations in resting-state brain efficiency, extending beyond the networks commonly investigated in human drug addiction, is linked to both abstinence duration and inhibitory control deficits in iCUD.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Humanos , Feminino , Pessoa de Meia-Idade , Adulto , Masculino , Estudos Transversais , Encéfalo/patologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
7.
NPJ Precis Oncol ; 7(1): 13, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707626

RESUMO

Recent studies show that rare, deleterious variants (RDVs) in certain genes are critical determinants of heritable cancer risk. To more comprehensively understand RDVs, we performed the largest-to-date germline variant calling analysis in a case-control setting for a multi-cancer association study from whole-exome sequencing data of 20,789 participants, split into discovery and validation cohorts. We confirm and extend known associations between cancer risk and germline RDVs in specific gene-sets, including DNA repair (OR = 1.50; p-value = 8.30e-07; 95% CI: 1.28-1.77), cancer predisposition (OR = 1.51; p-value = 4.58e-08; 95% CI: 1.30-1.75), and somatic cancer drivers (OR = 1.46; p-value = 4.04e-06; 95% CI: 1.24-1.72). Furthermore, personal RDV load in these gene-sets associated with increased risk, younger age of onset, increased M1 macrophages in tumor and, increased tumor mutational burden in specific cancers. Our findings can be used towards identifying high-risk individuals, who can then benefit from increased surveillance, earlier screening, and treatments that exploit their tumor characteristics, improving prognosis.

8.
J Thorac Oncol ; 18(1): 31-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243387

RESUMO

We review research regarding the epidemiology, risk factors, genetic susceptibility, molecular pathology, and early detection of SCLC, a deadly tumor that accounts for 14% of lung cancers. We first summarize the changing incidences of SCLC globally and in the United States among males and females. We then review the established risk factor (i.e., tobacco smoking) and suspected nonsmoking-related risk factors for SCLC, and emphasize the importance of continued effort in tobacco control worldwide. Review of genetic susceptibility and molecular pathology suggests different molecular pathways in SCLC development compared with other types of lung cancer. Last, we comment on the limited utility of low-dose computed tomography screening in SCLC and on several promising blood-based molecular biomarkers as potential tools in SCLC early detection.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Masculino , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Predisposição Genética para Doença , Patologia Molecular , Detecção Precoce de Câncer/métodos , Fatores de Risco , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/epidemiologia , Carcinoma de Pequenas Células do Pulmão/genética
9.
Commun Biol ; 5(1): 557, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676449

RESUMO

Mammalian models are essential for brain aging research. However, the long lifespan and poor amenability to genetic and pharmacological perturbations have hindered the use of mammals for dissecting aging-regulatory molecular networks and discovering new anti-aging interventions. To circumvent these limitations, we developed an ex vivo model system that faithfully mimics the aging process of the mammalian brain using cultured mouse brain slices. Genome-wide gene expression analyses showed that cultured brain slices spontaneously upregulated senescence-associated genes over time and reproduced many of the transcriptional characteristics of aged brains. Treatment with rapamycin, a classical anti-aging compound, largely abolished the time-dependent transcriptional changes in naturally aged brain slice cultures. Using this model system, we discovered that prions drastically accelerated the development of age-related molecular signatures and the pace of brain aging. We confirmed this finding in mouse models and human victims of Creutzfeldt-Jakob disease. These data establish an innovative, eminently tractable mammalian model of brain aging, and uncover a surprising acceleration of brain aging in prion diseases.


Assuntos
Envelhecimento , Encéfalo , Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Doenças Priônicas/genética , Doenças Priônicas/patologia , Príons/genética
10.
Front Bioinform ; 22022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35647580

RESUMO

How we interact with computer graphics has not changed significantly from viewing 2D text and images on a flatscreen since their invention. Yet, recent advances in computing technology, internetworked devices and gaming are driving the design and development of new ideas in other modes of human-computer interfaces (HCIs). Virtual Reality (VR) technology uses computers and HCIs to create the feeling of immersion in a three-dimensional (3D) environment that contains interactive objects with a sense of spatial presence, where objects have a spatial location relative to, and independent of the users. While this virtual environment does not necessarily match the real world, by creating the illusion of reality, it helps users leverage the full range of human sensory capabilities. Similarly, Augmented Reality (AR), superimposes virtual images to the real world. Because humans learn the physical world through a gradual sensory familiarization, these immersive visualizations enable gaining familiarity with biological systems not realizable in the physical world (e.g., allosteric regulatory networks within a protein or biomolecular pathways inside a cell). As VR/AR interfaces are anticipated to be explosive in consumer markets, systems biologists will be more immersed into their world. Here we introduce a brief history of VR/AR, their current roles in systems biology, and advantages and disadvantages in augmenting user abilities. We next argue that in systems biology, VR/AR technologies will be most useful in visually exploring and communicating data; performing virtual experiments; and education/teaching. Finally, we discuss our perspective on future directions for VR/AR in systems biology.

11.
Transl Lung Cancer Res ; 11(5): 910-919, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35693291

RESUMO

To realize the goals of precision medicine in complex disease, discriminative clinical risk models are needed. One approach that has been proposed is polygenic risk scores (PRSs). PRSs incorporate information about inherited genetic risk for cancer, specifically those genetic variants that are common in the population. While PRSs are clearly associated with risk of cancer, there is an on-going debate on whether integrating PRSs into clinical practice have utility. Here, we present this important discussion to the cancer clinic. We argue that in cancer, the clinical utility of PRSs will depend on their actionability, or how such a score may guide clinical practice. In turn, the actionability depends on several factors. First, actionability depends on the discriminative power of the score, or how well it predicts who is at risk of the disease. Second, it depends on their comparative performance with respect to existing practice, as a score with good discriminative power will not be useful if there are better predictors used in the clinic. Finally, for a PRS to be useful there must also be available preventive actions. We discuss the strengths and challenges of utilizing a PRS in the context of each of these criteria, and provide insights on what is needed towards moving forward in translating PRSs into the cancer clinic. We further argue that in future studies, beyond predicting cancer risk, similarly developed PRS models may be of utility in predicting prognosis or treatment resistance.

13.
Cancer Epidemiol Biomarkers Prev ; 31(7): 1466-1472, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511739

RESUMO

BACKGROUND: A previous genome-wide association study identified several loci with genetic variants associated with prostate cancer survival time in two cohorts from Sweden. Whether these variants have an effect in other populations or if their effect is homogenous across the course of disease is unknown. METHODS: These variants were genotyped in a cohort of 1,298 patients. Samples were linked with age, PSA level, Gleason score, cancer stage at surgery, and times from surgery to biochemical recurrence to death from prostate cancer. SNPs rs2702185 and rs73055188 were tested for association with prostate cancer-specific survival time using a multivariate Cox proportional hazard model. SNP rs2702185 was further tested for association with time to biochemical recurrence and time from biochemical recurrence to death with a multi-state model. RESULTS: SNP rs2702185 at SMG7 was associated with prostate cancer-specific survival time, specifically the time from biochemical recurrence to prostate cancer death (HR, 2.5; 95% confidence interval, 1.4-4.5; P = 0.0014). Nine variants were in linkage disequilibrium (LD) with rs2702185; one, rs10737246, was found to be most likely to be functional based on LD patterns and overlap with open chromatin. Patterns of open chromatin and correlation with gene expression suggest that this SNP may affect expression of SMG7 in T cells. CONCLUSIONS: The SNP rs2702185 at the SMG7 locus is associated with time from biochemical recurrence to prostate cancer death, and its LD partner rs10737246 is predicted to be functional. IMPACT: These results suggest that future association studies of prostate cancer survival should consider various intervals over the course of disease.


Assuntos
Proteínas de Transporte , Neoplasias da Próstata , Proteínas de Transporte/genética , Cromatina , Estudo de Associação Genômica Ampla , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade , Polimorfismo de Nucleotídeo Único , Antígeno Prostático Específico , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade
14.
Cancer Epidemiol Biomarkers Prev ; 31(7): 1450-1459, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35477182

RESUMO

BACKGROUND: The genetic factors that modulate risk for developing lung cancer have not been fully defined. Here, we sought to determine the prevalence and clinical significance of germline pathogenic/likely pathogenic variants (PV) in patients with advanced lung cancer. METHODS: We studied clinical and tumor characteristics of germline PV in 5,118 patients who underwent prospective genomic profiling using paired tumor-normal tissue samples in 468 cancer genes. RESULTS: Germline PV in high/moderate-penetrance genes were observed in 222 (4.3%) patients; of these, 193 patients had PV in DNA damage repair (DDR) pathway genes including BRCA2 (n = 54), CHEK2 (n = 30), and ATM (n = 26) that showed high rate of biallelic inactivation in tumors. BRCA2 heterozygotes with lung adenocarcinoma were more likely to be never smokers and had improved survival compared with noncarriers. Fourteen patients with germline PV in lung cancer predisposing genes (TP53, EGFR, BAP1, and MEN1) were diagnosed at younger age compared with noncarriers, and of tumor suppressors, 75% demonstrated biallelic inactivation in tumors. A significantly higher proportion of germline PV in high/moderate-penetrance genes were detected in high-risk patients who had either a family history of any cancer, multiple primary tumors, or early age at diagnosis compared with unselected patients (10.5% vs. 4.1%; P = 1.7e-04). CONCLUSIONS: These data underscore the biological and clinical importance of germline mutations in highly penetrant DDR genes as a risk factor for lung cancer. IMPACT: The family members of lung cancer patients harboring PV in cancer predisposing genes should be referred for genetic counseling and may benefit from proactive surveillance.


Assuntos
Predisposição Genética para Doença , Neoplasias Pulmonares , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Neoplasias Pulmonares/genética , Estudos Prospectivos
15.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37496156

RESUMO

Conflicts and natural disasters affect entire populations of the countries involved and, in addition to the thousands of lives destroyed, have a substantial negative impact on the scientific advances these countries provide. The unprovoked invasion of Ukraine by Russia, the devastating earthquake in Turkey and Syria, and the ongoing conflicts in the Middle East are just a few examples. Millions of people have been killed or displaced, their futures uncertain. These events have resulted in extensive infrastructure collapse, with loss of electricity, transportation, and access to services. Schools, universities, and research centers have been destroyed along with decades' worth of data, samples, and findings. Scholars in disaster areas face short- and long-term problems in terms of what they can accomplish now for obtaining grants and for employment in the long run. In our interconnected world, conflicts and disasters are no longer a local problem but have wide-ranging impacts on the entire world, both now and in the future. Here, we focus on the current and ongoing impact of war on the scientific community within Ukraine and from this draw lessons that can be applied to all affected countries where scientists at risk are facing hardship. We present and classify examples of effective and feasible mechanisms used to support researchers in countries facing hardship and discuss how these can be implemented with help from the international scientific community and what more is desperately needed. Reaching out, providing accessible training opportunities, and developing collaborations should increase inclusion and connectivity, support scientific advancements within affected communities, and expedite postwar and disaster recovery.


Assuntos
Conflitos Armados , Ciência , Humanos , Ucrânia
16.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358469

RESUMO

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteogenômica , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Ubiquitinação
17.
Neuron ; 109(9): 1465-1478.e4, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33756103

RESUMO

The identification of rare variants associated with schizophrenia has proven challenging due to genetic heterogeneity, which is reduced in founder populations. In samples from the Ashkenazi Jewish population, we report that schizophrenia cases had a greater frequency of novel missense or loss of function (MisLoF) ultra-rare variants (URVs) compared to controls, and the MisLoF URV burden was inversely correlated with polygenic risk scores in cases. Characterizing 141 "case-only" genes (MisLoF URVs in ≥3 cases with none in controls), the cadherin gene set was associated with schizophrenia. We report a recurrent case mutation in PCDHA3 that results in the formation of cytoplasmic aggregates and failure to engage in homophilic interactions on the plasma membrane in cultured cells. Modeling purifying selection, we demonstrate that deleterious URVs are greatly overrepresented in the Ashkenazi population, yielding enhanced power for association studies. Identification of the cadherin/protocadherin family as risk genes helps specify the synaptic abnormalities central to schizophrenia.


Assuntos
Caderinas/genética , Predisposição Genética para Doença/genética , Esquizofrenia/genética , Éxons/genética , Feminino , Efeito Fundador , Humanos , Judeus/genética , Masculino , Mutação
19.
Cancer Prev Res (Phila) ; 14(4): 441-454, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33419763

RESUMO

We investigated a Spanish and Catalan family in which multiple cancer types tracked across three generations, but for which no genetic etiology had been identified. Whole-exome sequencing of germline DNA from multiple affected family members was performed to identify candidate variants to explain this occurrence of familial cancer. We discovered in all cancer-affected family members a single rare heterozygous germline variant (I654V, rs1801201) in ERBB2/HER2, which is located in a transmembrane glycine zipper motif critical for ERBB2-mediated signaling and in complete linkage disequilibrium (D' = 1) with a common polymorphism (I655V, rs1136201) previously reported in some populations as associated with cancer risk. Because multiple cancer types occurred in this family, we tested both the I654V and the I655V variants for association with cancer across multiple tumor types in 6,371 cases of Northern European ancestry drawn from The Cancer Genome Atlas and 6,647 controls, and found that the rare variant (I654V) was significantly associated with an increased risk for cancer (OR = 1.40; P = 0.021; 95% confidence interval (CI), 1.05-1.89). Functional assays performed in HEK 293T cells revealed that both the I655V single mutant (SM) and the I654V;I655V double mutant (DM) stabilized ERBB2 protein and activated ERBB2 signaling, with the DM activating ERBB2 significantly more than the SM alone. Thus, our results suggest a model whereby heritable genetic variation in the transmembrane domain activating ERBB2 signaling is associated with both sporadic and familial cancer risk, with increased ERBB2 stabilization and activation associated with increased cancer risk. PREVENTION RELEVANCE: By performing whole-exome sequencing on germline DNA from multiple cancer-affected individuals belonging to a family in which multiple cancer types track across three generations, we identified and then characterized functional common and rare variation in ERBB2 associated with both sporadic and familial cancer. Our results suggest that heritable variation activating ERBB2 signaling is associated with risk for multiple cancer types, with increases in signaling correlated with increases in risk, and modified by ancestry or family history.


Assuntos
Biomarcadores Tumorais/genética , Exoma , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndromes Neoplásicas Hereditárias/patologia , Receptor ErbB-2/genética , Adolescente , Adulto , Idoso , Criança , Análise Mutacional de DNA , Feminino , Testes Genéticos , Humanos , Masculino , Síndromes Neoplásicas Hereditárias/genética , Linhagem , Sequenciamento do Exoma , Adulto Jovem
20.
Cell ; 183(7): 1962-1985.e31, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33242424

RESUMO

We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteogenômica , Neoplasias Encefálicas/imunologia , Criança , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Glioma/genética , Glioma/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Mutação/genética , Gradação de Tumores , Recidiva Local de Neoplasia/patologia , Fosfoproteínas/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...